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Problem Definition

Problem: count the number of triangles in graphs.

Given: Goal:

e aset Vofnodes, |V| =n |
‘ ‘ e Count the global number of triangles

o A set E of edges, ‘E‘ =m A ={u,v,w}, where {u,v}, {w,u}, and
{v,w} are all in the set E of the edges

Applications:
e Community detection
e Anomaly detection

e Molecular biology
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Settings of our problem

INn most applications, the exact computation of triangles is unfeasible, due to the size
of the data.

e Design fast and efficient
algorithms, that provide high- a
quality approximation /

® or example, we can store a
small fraction of edges of the

graph

- Use of Sampling | |

Sample of Twitter followers
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Edge Sampling in Streaming

Each incoming edge on the stream Is included Iin the sample with a certain probability.

Stream 2

Current Sample
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Edge Sampling in Streaming

Each incoming edge on the stream Is included Iin the sample with a certain probability.

How to choose which edges to store”
Stream 2.
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State of The Art

For Insertion-only streams, we consider:

e Triest: |De Stefani et al., KDD 20106]
Sample of edges via reservoir sampling
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e Triest: |De Stefani et al., KDD 20106]
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Uniform random sample of k edges

AAAAANAA M Nl

Memory budget k = number of edges to store
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State of The Art

For Insertion-only streams, we consider:

e WRS: [Shin K., ICDM 2017]
Most recent edges (waiting room) + reservoir sampling
Exploit temporal localities in real graph streams

Waiting Room of k - a edges
Uniform random sample of £ - (1 — o) edges

B S B P e

Memory budget k = number of edges to store
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State of The Art

This talk: Triangle Counting Using Predictions

C. Boldrin and F. Vandin, “Fast and Accurate Triangle Counting in Graph Streams Using
Predictions”, [CDM 2024

37



Algorithms with Predictions

Use of predictions about the input data has been formalised in the “Algorithms
with Predictions” framework [Mitzenmacher and Vassilvitskii, 2020}

e (5O beyond worst-case analysis

e Predictor empowering effectiveness of classical algorithms

38



State of The Art

For Insertion-only streams, we consider:

e Chen: [Chen et al., ICLR 2022]
Heavy edges set + Fixed Probablility Sampling

39



State of The Art

For Insertion-only streams, we consider:

e Chen: [Chen et al., ICLR 2022]
Heavy edges set + Fixed Probablility Sampling

Uniform random sample of & - edges

Memory budget k = number of edges to store

40




Heavy Edges

Heaviness of an edge e: number of triangles incident to e.

Idea: it an edge is heavy, we want to keep It In our sample.
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Heavy Edges

Heaviness of an edge e: number of triangles incident to e.

Idea: it an edge is heavy, we want to keep It In our sample.

Assumption:

Predictor Oy, : E — R™ gives a measure
related to the heaviness for each edge

Always store the heaviest edges in set /1
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State of The Art

For Insertion-only streams, we consider:

e Chen: [Chen et al., ICLR 2022]
Heavy edges set + Fixed Probability Sampling
L ack of practical predictor!

Uniform random sample of & - edges

Memory budget k = number of edges to store
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Challenges of Our Problem

Problem: Approximating the numlber of triangles in graph streams
using predictions.

Challenges:

o Keep high-quality approximations at every time during the stream

e Do not exceed a given memory budget

e Updates of edges can only be accessed once (one-pass algorithm)

e Design a practical and efficient predictor

49



Overview of Our Algorithm

Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

Memory budget k = number of edges to store

AAAAAAAAAA A"

50



Overview of Our Algorithm

Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

Memory budget k = number of edges to store

Ao

A

Store k- a
Most recent
edges in
waiting
room W

51



Overview of Our Algorithm

Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

Memory budget k = number of edges to store

T S e

A

Store k- a Storek-(1 —a)-p
Most recent heaviest edges
edges in (according to the
waiting predictor) in heavy
room W edge set H

52



Overview of Our Algorithm

Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

Memory budget k = number of edges to store

AAA A"

A
Store k - a Storek-(1 —a)-f Store a uniform
most recent ~ heaviest edges random sample S of
edges in (according to the k-(1—a)- (1 —p)light

waiting predictor) in heavy edges
room W edge set H
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Overview of Our Algorithm

Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

Memory budget k = number of edges to store

S AAAAAAA A"

Store k - a Storek- (1 —a)-p Store a uniform

most recent ~ heaviest edges random sample S of
edges in (according to the k-(1—a)- (1 —p)light
waiting predictor) in heavy edges

room W edge set H
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Our Contributions

® /onic provides fast and accurate approximations of global (and local) triangles In
both Insertion-only and fully-dynamic graph streams

e \\e propose a simple and application-independent predictor, based on the
degree of the nodes

o Extensive experimental evaluation shows improvements and scalabllity of /onic
with respect to the state of the art
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

Stream 2
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

Count triangles closed by current edge e in our sample.

Stream 2
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

Count triangles closed by current edge e in our sample.

Stream X
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

Triangles are weighted by the inverse probability with which edges have been sampled.

Stream 2
O
------------------- + + + + +
Q ® @ 00 ©
’ TiME  ——————
(E)

0

Current Sample WOy HY y W
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

Current edge e” is inserted in the waiting room.

Q +
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

If W% is full, pop oldest edge, and sample lightest (according to the predictor) between

opped edge and edges in H'".
POPP J J Stream X

Oldest edge in W
(A ‘ + + + JOICTT
o ® © ©

Current Sample WOy HY y W
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

If W% is full, pop oldest edge, and sample lightest (according to the predictor) between

opped edge and edges in H'".
POPP J J Stream X

Sample the lightest

+
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

If W% is full, pop oldest edge, and sample lightest (according to the predictor) between

opped edge and edges in H'".
POPP J J Stream X
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time t:

If W% is full, pop oldest edge, and sample lightest (according to the predictor) between

opped edge and edges in H'".
POPP J J Stream X
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A Practical Heaviness Predictor

We do not make any assumption on the predictor used by /onic.
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A Practical Heaviness Predictor

We do not make any assumption on the predictor used by /onic.

We propose a simple, practical and application-independent predictor:

stores n highest-degree nodes and degrees. Given edge e = {u, v},
outputs: Oy ({u, v}) = min (deg(u), deg(v)) if both u and v are present, O otherwise.

Vi | deg(vy)
Uy | deg(u)

Vo | deg(v,)

S|

; V3 | deg(v;)

/1



Tonic: theoretical analysis

Theorem (Unbiasedness of estimates): let T be the true number of global triangles. Then,
Tonic outputs T such that:

0] =10, 150
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Tonic: theoretical analysis

We prove that useful predictions in Tonic leads to better estimates than using WRS alone.
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Tonic: theoretical analysis

We prove that useful predictions in Tonic leads to better estimates than using WRS alone.

Consider:

- WRS sampling edges leaving the waiting room with probability p

» Jonic sampling light edges with probability p’ < p

« We define an edge e as heavy if e appears in > p triangles (otherwise, light)

- Errors of predictions: heavy edges invo
triangles, for some ¢ > 1. For edges with

wrong choices

ved in > p - ¢ triangles, light edges

involved in < p/c

neaviness € |p/c, p - c|, the prec

74

ictor can make arbitrarily



Tonic: theoretical analysis

Let 13, the total number of triangles in which heavy edges appear, and 1; similarly for light
edges.
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Tonic: theoretical analysis

Let 13, the total number of triangles in which heavy edges appear, and 1; similarly for light
edges.

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS
estimates If:

. (1/p” = 1p*) +cp(lip’=1/p)

TL
(1/p — D)3 + 4plc)

T, >
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Tonic: theoretical analysis

Let 13, the total number of triangles in which heavy edges appear, and 1; similarly for light
edges.

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS
estimates If:

. (1/p” = 1p*) +cp(lip’=1/p)

TL
(1/p — D)3 + 4plc)

T, >

Interpretation: useful predictions (predicted heavy edges are involved in a sufficient number of
triangles), lead to better estimates.

’r’



Experimental Evaluation

We consider real-world single graph streams, from social network, citation network.

Compare Tonic with state-of-the-art: algorithms provided with same memory budget k.

TABLE 1
DATASETS’ STATISTICS: NUMBER 1n OF NODES; NUMBER m OF EDGES;
NUMBER 1" OF TRIANGLES

Dataset n m T

Single Graphs

Edit EN Wikibooks 133k 386k 178k
SOC YouTube Growth 3.2M 9.3M 12.3M
Cit US Patents 3.7TM 16.5M 7.50M
Actors Collaborations 382k 15M 346.8 M
Stackoverflow 2.0M 2801 M  114.2M
SOC LiveJournal 4.8 M 42.8M  285.7TM

Twitter-merged 41 M 1.28 34.88
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We consider real-world single graph streams, from social network, citation network.

Compare Tonic with state-of-the-art: algorithms provided with same memory budget k.

TABLE 1

DATASETS’ STATISTICS: NUMBER 1n OF NODES; NUMBER m OF EDGES;
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SOC LivelJournal 4.8 M A42.8M  285.7TM
Twitter-merged 41 M 1.28 34.88
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Edge Heaviness Predictors

INn our experiments we considered:

OracleExact

e OracleExact, stores the value of A(e) for
top 10% (m/10) heaviest edges ¢
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Edge Heaviness Predictors

INn our experiments we considered:

OracleExact Oracle-noWR

e OracleExact

e Oracle-noVWR, subtracts to A(e) the

triangles for which e is in the waiting
room, for top 10% edges
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Edge Heaviness Predictors

INn our experiments we considered:

OracleExact Oracle-noWR

e OracleExact

e Oracle-noVWR, subtracts to A(e) the

triangles for which e is in the waiting
room, for top 10% edges

Impractical Predictors
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Edge Heaviness Predictors

INn our experiments we considered:

OracleExact Oracle-noWR MinDegreePredictor

e OracleExact

e Oracle-no\WR

o MinDegreePredictor, stores i highest-
degree nodes and degrees. Given edge
e = {u, v}, outputs:

Oy ({u, v}) = min (deg(u), deg(v))
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Edge Heaviness Predictors

INn our experiments we considered:

OracleExact Oracle-noWR MinDegreePredictor

e OracleExact

e Oracle-no\WR

e NMinDegreePredictor

In practice, n <K m/10 !

84



Experimental Evaluation

A— WRS (a=0.1) --l- Chen et al. - OracleExact ( = 0.3) @ TONIC - OracleExact (a = 0.05, § = 0.2) —@— TONIC - Oracle-noWR (a =0.05, 3 =0.2) @ TONIC - MinDegreePredictor (a = 0.05, § =0.2)
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Experimental Evaluation

(1) Quality of approximations in terms of unbiasedness and variance

A— WRS (a=0.1) --l- Chen et al. - OracleExact (B = 0.3) @ TONIC - OracleExact (a = 0.05, § = 0.2) —@— TONIC - Oracle-noWR (a =0.05, 3 =0.2) @ TONIC - MinDegreePredictor (a = 0.05, § =0.2)
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Experimental Evaluation

(1) Quality of approximations in terms of unbiasedness and variance, and estimations
at any time of the stream:

A— WRS (a=0.1) --l- Chen et al. - OracleExact ( = 0.3) @ TONIC - OracleExact (a = 0.05, § = 0.2) —@— TONIC - Oracle-noWR (a =0.05, 3 =0.2) @ TONIC - MinDegreePredictor (a = 0.05, § =0.2)
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Experimental Evaluation

(2) Global Relative Error and Runtime vs Memory Budget &:

A— WRS (a=0.1) --l- Chen et al. - OracleExact ( = 0.3) -4 TONIC - OracleExact (a = 0.05, = 0.2) —@— TONIC - Oracle-noWR (a = 0.05, 3 =0.2) @ TONIC - MinDegreePredictor (a = 0.05,  =0.2)
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Experimental Evaluation

(2) Global Relative Error and Runtime vs Memory Budget &:
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Global Relative Error

Global Relative Error
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Experimental Evaluation

(2) Global Relative Error and Runtime vs Memory Budget &:

A— WRS (a=0.1) --l- Chen et al. - OracleExact ( = 0.3) -4 TONIC - OracleExact (a = 0.05, = 0.2) —@— TONIC - Oracle-noWR (a = 0.05, 3 =0.2) —@— TONIC - MinDegreePredictor (a = 0.05, = 0.2)

B ¢ @ OracleExact/noWR size: 2.8M edges

@ MinDegreePredictor size: 19.1k nodes
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Experimental Evaluation

We consider snapshot sequences from autonomous system networks.

Snapshot Sequences

Oregon (9 graphs) 11k 23k 19.8k
AS-CAIDA (122 graphs) 206k 53k 36.3k
AS-733 (733 graphs) 6k 13k 6.5k
Twitter (4 graphs) 29.9M  373M 4.48B

Predictors are trained only on the first graph, and then used for subseguent streams.
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Experimental Evaluation

hot networks

IoN IN shaps

(3) Evaluat

AS-733 Snapshots, using #1 graph as oracle

AS-733 Snapshots, using AS-733 #1 graph as oracle
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Experimental Evaluation

(3) Evaluation in snapshot networks:

AS-733 Snapshots, using AS-733 #1 graph as oracle
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Global Relative Error

Experimental Evaluation

(3) Evaluation in snapshot networks:
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Conclusion

Our contributions:

e [ast and accurate algorithm for approximating the number of global and local triangles using predictions,
both for insertion-only and fully-dynamic streams;

e Proposal of very simple and application-independent predictor, based on the degree of nodes;

e [xtensive experimental evaluation, showing significant improvements, especially on networks with
sequences of hundreds of graph streams.
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Reservoir Sampling

Uniform sampling of edges in the stream [De Stefani et al., KDD 2016].

A sample S C E is said to be an uniform sample if all equal-sized subsets of E are equally likely to be S

P[S=A|=P[S=B|,YA#BCE suhthat |[A| = |B].
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Reservoir Sampling

Uniform sampling of edges in the stream [De Stefani et al., KDD 2016].

A sample S C E is said to be an uniform sample if all equal-sized subsets of E are equally likely to be S
P[S=A|=P[S=B|,YA#BCE suhthat |[A| = |B].

Let e pe the edge at time ¢. Reservoir sampling keeps a uniform sample S of k edges as follows:

o If |S| < k, then e is added to sample S

k
* Otherwise, with probability —, edge e is added to sample S by replacing an uniformly at random edge from
[

the sample
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Waiting Room

Most real graph streams observe the tendency that future edges are more likely to form
triangles with recent edges rather than with older edges [Shin K., ICDM
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Waiting Room

Most real graph streams observe the tendency that future edges are more likely to form
triangles with recent edges rather than with older edges [Shin K., ICDM 2017].
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State of The Art

For fully-dynamic streams, we consider:
e ThinkD,.. r random pairing [Shin et al., ECML PKDD 2018]

e WRS,,; : waiting room + random pairing sampling [Lee et al., The VL.DB Journal 2020]
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Random Pairing

Random Pairing: achieve uniform sample in fully-dynamic streams.

Goal: compensate sample deletions using subsequent insertions. Maintain counters d, and d, for number
of good and number of bad uncompensated deletions.

When receiving an edge insertion ¢'":

o If dg + d,, = 0O (deletions compensated), then proceed by reservoir sampling

d,

d, + d,

and decrement counters

e Else, add e to sample S with probability

When receiving an edge deletion e?:

o If ¢ is not in the sample S, then ignore it (good sample deletion)

e Else, delete ¢ from S (bad sample deletion)
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Algorithms with Predictions

Use of predictions about the input data has been formalised in the “Algorithms
with Predictions” framework [Mitzenmacher and Vassilvitskii, 2020}

e (5O beyond worst-case analysis

e Predictor empowering effectiveness of classical algorithms

Challenges:

* Consistency: useful predictions improve performances
 Robustness: bad predictions do not worsen too much performances

* Practicality: predictions derived by tasks on same data-domain
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Tonic: Overall Algorithm

For each edge e observed on the stream X at time .

Each triangle counted or deleted in the sample is scaled by the inverse of the probabillity
with which the triangle edges but ¢ have been previously sampled.

Probability p Computation:

e |fno edges arelight: p = 1 Reservoir Sampling:

k(1 —a)(1 — p)
EX

e If only one edge is light: p = p¥ p¥Y =min| 1,

e If both edges are light: p = p® - pt=D



Tonic: Overall Algorithm

For each edge e observed on the stream X at time .

Each triangle counted or deleted in the sample is scaled by the inverse of the probabillity
with which the triangle edges but ¢ have been previously sampled.

Probability p Computation:

e Ifnoedgesarelight: p =1 Random Pairing:

k(1 —a)(1 = f)
|20 +d, +4,

e If only one edge is light: p = p¥ pW =min| 1

e If both edges are light: p = p® - pt=D



Tonic: theoretical analysis

We prove that the predictor helps when it provides fairly reliable information on heavy edges.
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Tonic: theoretical analysis

We prove that the predictor helps when it provides fairly reliable information on heavy edges.

f this Is not the case, we also prove that our algorithm JTonic returns estimates as accurate as
WRS.

Proposition (informal): the variance of the estimates of Tonic is equal than the variance of the
estimates of WRS if the predictor predicts a randomly chosen set of edges as heavy edges.
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Tonic: theoretical analysis

Let T, the total number of triangles in which heavy edges appear, and 1; similarly for light edges.

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS estimates If:

. (1/p"* = 1/p® + cp(1/p’ = 1/p) |

T, >
(1/p — D)3 + 4plc)

I

Interpretation: useful predictions (predicted heavy edges are involved in a sufficient number of

triangles), lead to better estimates.

Representative values: if p’ = 0.09 < p = 0.1, p = 100 and ¢ = 1.5, then the bound above
corresponds to 1 being at least one fifth of the overall number of triangles.
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Edge Heaviness Predictor

The predictor used by Tonic could be implemented by a machine learning model that may
consider information other than the graph.

IN our experiments we consider:

~ Wikibooks (n ~ 133k, m ~ 386k, T ~ 178Kk) YouTube (n ~3.2M,m ~9.3M,T ~ 12.3M) Patents (n ~3.7M,m ~ 16.5M, T ~ 7.5M)
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Experimental Evaluation

(") Quality of approximations in terms of unbiasedness and variance, estimations at any
time of the stream, and number of counted and estimated triangles.
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Experimental Evaluation

(4) Performances in fully-dynamic streams.
Streams are created computing additions and deletions from snapshot networks.

Again, predictors are trained only on the first graph, hence oblivious to removals of edges.
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Experimental Evaluation

(4) Performances in fully-dynamic streams.
Streams are created computing additions and deletions from snapshot networks.

Again, predictors are trained only on the first graph, hence oblivious to removals of edges.
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