
Abu Dhabi
December, 2024

Cristian Boldrin Fabio Vandin

University of Padova, Italy

cristian.boldrin.2@phd.unipd.it

Fast and Accurate Triangle
Counting in Graph Streams Using

Predictions

Problem Definition

2

Problem: count the number of triangles in graphs.

Problem Definition

3

Problem: count the number of triangles in graphs.

1

1

1

1

1

1

Given:

• a set of nodes,

• A set of edges,

V V = n

E E = m

Problem Definition

4

Problem: count the number of triangles in graphs.

1

1

1

1

1

1

Given:

• a set of nodes,

• A set of edges,

V V = n

E E = m

Given:

• a set of nodes,

• A set of edges,

V V = n

E E = m

Problem Definition

5

Problem: count the number of triangles in graphs.

1

1

1

1

1

1

Goal:

• Count the global number of triangles
, where , , and

 are all in the set of the edges

• Count the local number of triangles for
each node in the graph.

Δ = {u, v, w} {u, v} {w, u}
{v, w} E

v

Problem Definition

6

Problem: count the number of triangles in graphs.

1

1

1

1

1

1

Goal:

• Count the global number of triangles
, where , , and

 are all in the set of the edges

• Count the local number of triangles for
each node in the graph.

Δ = {u, v, w} {u, v} {w, u}
{v, w} E

v

Given:

• a set of nodes,

• A set of edges,

V V = n

E E = m

Problem Definition

7

Problem: count the number of triangles in graphs.

1

1

1

1

1

1

Goal:

• Count the global number of triangles
, where , , and

 are all in the set of the edges

• Count the local number of triangles for
each node in the graph.

Δ = {u, v, w} {u, v} {w, u}
{v, w} E

v

Given:

• a set of nodes,

• A set of edges,

V V = n

E E = m

Problem Definition

8

Problem: count the number of triangles in graphs.

1

1

1
1

1

1

Goal:

• Count the global number of triangles
, where , , and

 are all in the set of the edges

• Count the local number of triangles for
each node in the graph.

Δ = {u, v, w} {u, v} {w, u}
{v, w} E

v

Given:

• a set of nodes,

• A set of edges,

V V = n

E E = m

Problem Definition

9

Problem: count the number of triangles in graphs.

Goal:

• Count the global number of triangles
, where , , and

 are all in the set of the edges

• Count the local number of triangles for
each node in the graph.

Δ = {u, v, w} {u, v} {w, u}
{v, w} E

v

1

1

1

Applications:

• Community detection

• Anomaly detection

• Molecular biology

Given:

• a set of nodes,

• A set of edges,

V V = n

E E = m

1

1

1

Settings of our problem

10

Streaming model:

Graph

Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

C

B

E

D

A

E B E T C

…+ ++ - -

Time

Settings of our problem

11

C

B

E

D

A

D A D L A

Stream Σ

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

12

C

A

E

D

B

A

E

D

T

L

C

A

…

Stream Σ

+ ++ - -

Time

D

E

B

Graph

Streaming model.
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

13

C

A

E

D

B

A

E

D

T

L

C

A

…

Stream Σ

+ ++ - -

Time

D

E

B

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

14

B

A

E

D

T

L

C

A

…

Stream Σ

++ - -

Time

D

E

A

B

C

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

15

B

A

E

D

T

L

C

A

…

Stream Σ

++ - -

Time

D

E

A

B

C

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

16

B

A

E

D

T

L

C

A

…

Stream Σ

++ - -

Time

D

E

A

B

C

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

17

E

D

T

L

C

A

…

Stream Σ

+- -

Time

D

E

A

B

C

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

18

E

D

T

L

C

A

…

Stream Σ

+- -

Time

D

E

A

B

C

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

19

E

D

T

L

C

A

…

Stream Σ

+- -

Time

D

E

A

B

C

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

20

T

L

C

A

…

Stream Σ

+ -

Time

D

E

A

B

C

Graph

Streaming model:
Edges are observed as a stream of updates in arbitrary order.

Updates: insertions and deletions.

Settings of our problem

21

In most applications, the exact computation of triangles is unfeasible, due to the size
of the data.

Settings of our problem

22

In most applications, the exact computation of triangles is unfeasible, due to the size
of the data.

Graph of Twitter followers

Settings of our problem

23

In most applications, the exact computation of triangles is unfeasible, due to the size
of the data.

Graph of Twitter followers

• Design fast and efficient
algorithms, that provide high-
quality approximation

• For example, we can store a
small fraction of edges of the
graph

Settings of our problem

24

In most applications, the exact computation of triangles is unfeasible, due to the size
of the data.

Graph of Twitter followers

• Design fast and efficient
algorithms, that provide high-
quality approximation

• For example, we can store a
small fraction of edges of the
graph

Settings of our problem

25

In most applications, the exact computation of triangles is unfeasible, due to the size
of the data.

Sample of Twitter followers

Use of Sampling

• Design fast and efficient
algorithms, that provide high-
quality approximation

• For example, we can store a
small fraction of edges of the
graph

E B E T C

…+ ++ - -

Time

Edge Sampling in Streaming

26

C

B

E

D

A

D A D L A

Stream Σ

Current Sample

Each incoming edge on the stream is included in the sample with a certain probability.

27

C

A

E

D

B

A

E

D

T

L

C

A

…

Stream Σ

+ ++ - -

Time

D

E

B

Edge Sampling in Streaming
Each incoming edge on the stream is included in the sample with a certain probability.

Current Sample

28

C

A

E

D

B

A

E

D

T

L

C

A

…

Stream Σ

+ ++ - -

Time

D

E

B

Edge Sampling in Streaming
Each incoming edge on the stream is included in the sample with a certain probability.

Current Sample

29

B

A

E

D

T

L

C

A

…

Stream Σ

++ - -

Time

D

E

A

B

C

Edge Sampling in Streaming
Each incoming edge on the stream is included in the sample with a certain probability.

Current Sample

30

B

A

E

D

T

L

C

A

…

Stream Σ

++ - -

Time

D

E

A

B

C

Edge Sampling in Streaming
Each incoming edge on the stream is included in the sample with a certain probability.

Current Sample

31

B

A

E

D

T

L

C

A

…

Stream Σ

++ - -

Time

D

E

A

B

C

Edge Sampling in Streaming
Each incoming edge on the stream is included in the sample with a certain probability.

Current Sample

32

B

A

E

D

T

L

C

A

…

Stream Σ

++ - -

Time

D

E

A

B

C

Edge Sampling in Streaming
Each incoming edge on the stream is included in the sample with a certain probability.

How to choose which edges to store?

Current Sample

For insertion-only streams, we consider:

• Triest: [De Stefani et al., KDD 2016]
Sample of edges via reservoir sampling

State of The Art

33

For insertion-only streams, we consider:

• Triest: [De Stefani et al., KDD 2016]
Sample of edges via reservoir sampling

State of The Art

34

…
Memory budget = number of edges to storek

Uniform random sample of edgesk

For insertion-only streams, we consider:

State of The Art

35

• WRS: [Shin K., ICDM 2017]
Most recent edges (waiting room) + reservoir sampling 
Exploit temporal localities in real graph streams

• Triest:

For insertion-only streams, we consider:

State of The Art

36

• WRS: [Shin K., ICDM 2017]
Most recent edges (waiting room) + reservoir sampling 
Exploit temporal localities in real graph streams

• Triest:

…
Memory budget = number of edges to storek

Uniform random sample of edgesk ⋅ (1 − α)
Waiting Room of edgesk ⋅ α

For

State of The Art

37

• WRS: [Shin K., ICDM 2017]
Most recent edges (waiting

• Triest:

This talk: Triangle Counting Using Predictions
C. Boldrin and F. Vandin, “Fast and Accurate Triangle Counting in Graph Streams Using
Predictions”, ICDM 2024

Algorithms with Predictions

Use of predictions about the input data has been formalised in the “Algorithms
with Predictions” framework [Mitzenmacher and Vassilvitskii, 2020]

• Go beyond worst-case analysis

• Predictor empowering effectiveness of classical algorithms

38

For insertion-only streams, we consider:

State of The Art

39

• Triest:
• WRS: [Shin K., ICDM 2017]

• Chen: [Chen et al., ICLR 2022]
Heavy edges set + Fixed Probability Sampling

For insertion-only streams, we consider:

State of The Art

40

• Triest:
• WRS: [Shin K., ICDM 2017]

• Chen: [Chen et al., ICLR 2022]
Heavy edges set + Fixed Probability Sampling

…
Memory budget = number of edges to storek

Uniform random sample of edgesk ⋅ (1 − β)
Heavy Edges Set of edgesk ⋅ β

Heaviness of an edge : number of triangles incident to .

Idea: if an edge is heavy, we want to keep it in our sample.

e e

Heavy Edges

41

1

1

1
1

11

1

1

Heavy Edges

42

1

1

1
1

11

1

1

e

Heaviness of an edge : number of triangles incident to .

Idea: if an edge is heavy, we want to keep it in our sample.

e e

Heavy Edges

43

1

1
1

11

1

1

e

 is heavy, incident to
“many” triangles (4 triangles)

e

1

Heaviness of an edge : number of triangles incident to .

Idea: if an edge is heavy, we want to keep it in our sample.

e e

Heavy Edges

44

1

1

1
1

11

1

1

e

Heaviness of an edge : number of triangles incident to .

Idea: if an edge is heavy, we want to keep it in our sample.

e e

 is heavy, incident to
“many” triangles (4 triangles)

e

Heavy Edges

45

1

1

1
1

11

1

1

Heaviness of an edge : number of triangles incident to .

Idea: if an edge is heavy, we want to keep it in our sample.

e e

Heaviness of an edge : number of triangles incident to .

Idea: if an edge is heavy, we want to keep it in our sample.

e e

Heavy Edges

46

1

1

1
1

11

1

1 Assumption:

Predictor gives a measure
related to the heaviness for each edge

OH : E → ℝ+

Heaviness of an edge : number of triangles incident to .

Idea: if an edge is heavy, we want to keep it in our sample.

e e

Heavy Edges

47

1

1

1
1

11

1

1

Always store the heaviest edges in set H

Assumption:

Predictor gives a measure
related to the heaviness for each edge

OH : E → ℝ+

For insertion-only streams, we consider:

State of The Art

48

• Triest:
• WRS: [Shin K., ICDM 2017]
• Chen: [Chen et al., ICLR 2022]

Heavy edges set + Fixed Probability Sampling
Lack of practical predictor!

…
Memory budget = number of edges to storek

Uniform random sample of edgesk ⋅ (1 − β)
Heavy Edges Set of edgesk ⋅ β

Challenges:

• Keep high-quality approximations at every time during the stream

• Do not exceed a given memory budget

• Updates of edges can only be accessed once (one-pass algorithm)

• Design a practical and efficient predictor

Challenges of Our Problem

49

Problem: Approximating the number of triangles in graph streams
using predictions.

50

…
Memory budget = number of edges to storek

Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

51

…
Memory budget = number of edges to storek

Store
most recent
edges in
waiting
room

k ⋅ α

W

Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

52

…
Memory budget = number of edges to storek

Store
heaviest edges
(according to the
predictor) in heavy
edge set

k ⋅ (1 − α) ⋅ β

H

Store
most recent
edges in
waiting
room

k ⋅ α

W

Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

53

…
Memory budget = number of edges to storek

Store
heaviest edges
(according to the
predictor) in heavy
edge set

k ⋅ (1 − α) ⋅ β

H

Store
most recent
edges in
waiting
room

k ⋅ α

W

Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

Store a uniform
random sample of

 light
edges

S
k ⋅ (1 − α) ⋅ (1 − β)

54

…
Memory budget = number of edges to storek

Store
heaviest edges
(according to the
predictor) in heavy
edge set

k ⋅ (1 − α) ⋅ β

H

Store
most recent
edges in
waiting
room

k ⋅ α

W

Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

We empirically fix:
 = 0.05, and = 0.2α β

Store a uniform
random sample of

 light
edges

S
k ⋅ (1 − α) ⋅ (1 − β)

55

• Tonic provides fast and accurate approximations of global (and local) triangles in
both insertion-only and fully-dynamic graph streams

• We propose a simple and application-independent predictor, based on the
degree of the nodes

• Extensive experimental evaluation shows improvements and scalability of Tonic
with respect to the state of the art

Our Contributions

56

• Tonic provides fast and accurate approximations of global (and local) triangles
in both insertion-only and fully-dynamic graph streams

• We propose a simple and application-independent predictor, based on the
degree of the nodes

• Extensive experimental evaluation shows improvements and scalability of Tonic
with respect to the state of the art

Our Contributions

57

E B E T C

…+ ++ + +

Time

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Tonic: Overall Algorithm
For each edge observed on the stream at time : e(t) Σ t

E

Current Sample

58

E B E T C

…+ ++ + +

Time

Current Sample

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Tonic: Overall Algorithm
For each edge observed on the stream at time :e(t) Σ t

E

 W(t) ∪ H(t) ∪ S(t)

59

E B E T C

…+ ++ + +

Time

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Tonic: Overall Algorithm
For each edge observed on the stream at time :

Count triangles closed by current edge in our sample.

e(t) Σ t

e(t)

E

Current Sample W(t) ∪ H(t) ∪ S(t)

E

60

E B E T C

…+ ++ + +

Time

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Tonic: Overall Algorithm
For each edge observed on the stream at time :

Count triangles closed by current edge in our sample.

e(t) Σ t

e(t)

Current Sample W(t) ∪ H(t) ∪ S(t)

E

61

E B E T C

…+ ++ + +

Time

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

For each edge observed on the stream at time :

Count triangles closed by current edge in our sample.

e(t) Σ t

e(t)

E

62

E B E T C

…

For each edge observed on the stream at time :

Triangles are weighted by the inverse probability with which edges have been sampled.

e(t) Σ t

+ ++ + +

Time

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

63

B E T C

…

For each edge observed on the stream at time :

Current edge is inserted in the waiting room.

e(t) Σ t

e(t)

++ + +

Time

A D L A

Stream Σ

A

C

B

E

D

Predictor OH

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

64

B E T C

…

For each edge observed on the stream at time :

If is full, pop oldest edge, and sample lightest (according to the predictor) between
popped edge and edges in .

e(t) Σ t

W(t)

H(t)

++ + +

Time

A D L A

Stream Σ

A

C

B

E

D

Oldest edge in W(t)

Predictor OH

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

65

B E T C

…++ + +

Time

A D L A

Stream Σ

A

C

B

E

D

Oldest edge in W(t)

Predictor OH

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

For each edge observed on the stream at time :

If is full, pop oldest edge, and sample lightest (according to the predictor) between
popped edge and edges in .

e(t) Σ t

W(t)

H(t)

66

B E T C

…++ + +

Time

A D L A

Stream Σ

A

C

B

E

D

Oldest edge in W(t)

Predictor OH
Lightest A

D

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

For each edge observed on the stream at time :

If is full, pop oldest edge, and sample lightest (according to the predictor) between
popped edge and edges in .

e(t) Σ t

W(t)

H(t)

67

B E T C

…++ + +

Time

A D L A

Stream Σ

A

C

B

E

D

Sample the lightest

Predictor OH

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

For each edge observed on the stream at time :

If is full, pop oldest edge, and sample lightest (according to the predictor) between
popped edge and edges in .

e(t) Σ t

W(t)

H(t)

68

B E T C

…++ + +

Time

A D L A

Stream Σ

A

C

B

E

D

Predictor OH

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

For each edge observed on the stream at time :

If is full, pop oldest edge, and sample lightest (according to the predictor) between
popped edge and edges in .

e(t) Σ t

W(t)

H(t)

69

B E T C

…++ + +

Time

A D L A

Stream Σ

A

C

B

E

D

Predictor OH

Tonic: Overall Algorithm

Current Sample W(t) ∪ H(t) ∪ S(t)

For each edge observed on the stream at time :

If is full, pop oldest edge, and sample lightest (according to the predictor) between
popped edge and edges in .

e(t) Σ t

W(t)

H(t)

A Practical Heaviness Predictor

70

We do not make any assumption on the predictor used by Tonic.

We propose a simple, practical and application-independent predictor:

MinDegreePredictor stores highest-degree nodes and degrees. Given edge ,
outputs: if both and are present, 0 otherwise.

n̄ e = {u, v}
OH ({u, v}) = min (deg(u), deg(v)) u v

A Practical Heaviness Predictor

71

MinDegreePredictor
v1 deg(v1)

u1 deg(u1)

v2 deg(v2)

v3 deg(v3)

... ...

We do not make any assumption on the predictor used by Tonic.

n̄

Tonic: theoretical analysis

72

Theorem (Unbiasedness of estimates): let be the true number of global triangles. Then,
Tonic outputs such that:

T(t)

̂T(t)

𝔼 [̂T(t)] = T(t), ∀ t ≥ 0

Tonic: theoretical analysis

73

We prove that useful predictions in Tonic leads to better estimates than using WRS alone.

Tonic: theoretical analysis

74

We prove that useful predictions in Tonic leads to better estimates than using WRS alone.

Consider:

• WRS sampling edges leaving the waiting room with probability

• Tonic sampling light edges with probability

• We define an edge as heavy if appears in triangles (otherwise, light)

• Errors of predictions: heavy edges involved in triangles, light edges involved in
triangles, for some . For edges with heaviness , the predictor can make arbitrarily
wrong choices

p

p′￼ < p

e e ≥ ρ

≥ ρ ⋅ c ≤ ρ/c
c ≥ 1 ∈ [ρ/c , ρ ⋅ c]

Tonic: theoretical analysis

75

Let the total number of triangles in which heavy edges appear, and similarly for light
edges.

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS
estimates if:

TH TL

TH > 3
(1/p′￼

2 − 1/p2) + cρ(1/p′￼− 1/p)
(1/p − 1)(3 + 4ρ/c)

⋅ TL

Tonic: theoretical analysis

76

Let the total number of triangles in which heavy edges appear, and similarly for light
edges.

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS
estimates if:

TH TL

TH > 3
(1/p′￼

2 − 1/p2) + cρ(1/p′￼− 1/p)
(1/p − 1)(3 + 4ρ/c)

⋅ TL

Tonic: theoretical analysis

77

Let the total number of triangles in which heavy edges appear, and similarly for light
edges.

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS
estimates if:

Interpretation: useful predictions (predicted heavy edges are involved in a sufficient number of
triangles), lead to better estimates.

TH TL

TH > 3
(1/p′￼

2 − 1/p2) + cρ(1/p′￼− 1/p)
(1/p − 1)(3 + 4ρ/c)

⋅ TL

TABLE I

DATASETS’ STATISTICS: NUMBER n OF NODES; NUMBER m OF EDGES;

NUMBER T OF TRIANGLES

Dataset n m T

Single Graphs

Edit EN Wikibooks 133k 386k 178k
SOC YouTube Growth 3.2M 9.3M 12.3M

Cit US Patents 3.7M 16.5M 7.5M
Actors Collaborations 382k 15M 346.8M

Stackoverflow 2.5M 28.1M 114.2M
SOC LiveJournal 4.8M 42.8M 285.7M
Twitter-merged 41M 1.2B 34.8B

Snapshot Sequences

Oregon (9 graphs) 11k 23k 19.8k
AS-CAIDA (122 graphs) 26k 53k 36.3k

AS-733 (733 graphs) 6k 13k 6.5k
Twitter (4 graphs) 29.9M 373M 4.4B

We consider real-world single graph streams, from social network, citation network.

Compare Tonic with state-of-the-art: algorithms provided with same memory budget .k

Experimental Evaluation

78

TABLE I

DATASETS’ STATISTICS: NUMBER n OF NODES; NUMBER m OF EDGES;

NUMBER T OF TRIANGLES

Dataset n m T

Single Graphs

Edit EN Wikibooks 133k 386k 178k
SOC YouTube Growth 3.2M 9.3M 12.3M

Cit US Patents 3.7M 16.5M 7.5M
Actors Collaborations 382k 15M 346.8M

Stackoverflow 2.5M 28.1M 114.2M
SOC LiveJournal 4.8M 42.8M 285.7M
Twitter-merged 41M 1.2B 34.8B

Snapshot Sequences

Oregon (9 graphs) 11k 23k 19.8k
AS-CAIDA (122 graphs) 26k 53k 36.3k

AS-733 (733 graphs) 6k 13k 6.5k
Twitter (4 graphs) 29.9M 373M 4.4B

We consider real-world single graph streams, from social network, citation network.

Compare Tonic with state-of-the-art: algorithms provided with same memory budget .k

Experimental Evaluation

79

Global Relative Error:
| ̂T − T | / T

In our experiments we considered:

Edge Heaviness Predictors

80

OracleExact
u1 v1

u2 v1

u3 v3

u2 v4 Δ ({u4, v4})

u1 v5 Δ ({u1, v5})

Δ ({u3, v3})

Δ ({u2, v1})

Δ ({u1, v1})

.

.

.
.

.

.

.

.

.

• OracleExact, stores the value of for
top 10% () heaviest edges entries
sorted by decreasing

Δ(e)
m/10 e

Δ′￼(e)

In our experiments we consider:

• OracleExact, storing the value of for
top 10% () heaviest edges , and 0
for the remaining ones

Δ(e)
m/10 e• OracleExact

• Oracle-noWR, subtracts to the
triangles for which is in the waiting
room, for top 10% edges entries sorted
by decreasing

Δ(e)
e

Δ′￼(e)

In our experiments we considered:

Edge Heaviness Predictors

81

OracleExact
u1 v1

u2 v1

u3 v3

u2 v4 Δ ({u4, v4})

u1 v5 Δ ({u1, v5})

Δ ({u3, v3})

Δ ({u2, v1})

Δ ({u1, v1})

Oracle-noWR
u2 v1

u3 v3

u2 v4

u7 v7 Δ′￼({u7, v7})

u1 v4 Δ′￼({u1, v4})

Δ′￼({u2, v4})

Δ′￼({u3, v3})

Δ′￼({u2, v1})

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

In our experiments we consider:

• OracleExact, storing the value of for
top 10% () heaviest edges , and 0
for the remaining ones

Δ(e)
m/10 e

Edge Heaviness Predictors

82

OracleExact
u1 v1

u2 v1

u3 v3

u2 v4 Δ ({u4, v4})

u1 v5 Δ ({u1, v5})

Δ ({u3, v3})

Δ ({u2, v1})

Δ ({u1, v1})

Oracle-noWR
u2 v1

u3 v3

u2 v4

u7 v7 Δ′￼({u7, v7})

u1 v4 Δ′￼({u1, v4})

Δ′￼({u2, v4})

Δ′￼({u3, v3})

Δ′￼({u2, v1})

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

Impractical Predictors

In our experiments we considered:

• OracleExact

• Oracle-noWR, subtracts to the
triangles for which is in the waiting
room, for top 10% edges entries sorted
by decreasing

Δ(e)
e

Δ′￼(e)

• OracleExact

• Oracle-noWR, subtracts to the
triangles for which is in the waiting
room, for top 10% edges entries sorted
by decreasing

Δ(e)
e

Δ′￼(e)• MinDegreePredictor, stores highest-
degree nodes and degrees. Given edge

, outputs:

n̄

e = {u, v}
OH ({u, v}) = min (deg(u), deg(v))

Edge Heaviness Predictors

83

OracleExact
u1 v1

u2 v1

u3 v3

u2 v4 Δ ({u4, v4})

u1 v5 Δ ({u1, v5})

Δ ({u3, v3})

Δ ({u2, v1})

Δ ({u1, v1})

Oracle-noWR
u2 v1

u3 v3

u2 v4

u7 v7 Δ′￼({u7, v7})

u1 v4 Δ′￼({u1, v4})

Δ′￼({u2, v4})

Δ′￼({u3, v3})

Δ′￼({u2, v1})

MinDegreePredictor
v1 deg(v1)

u1 deg(u1)

v2 deg(v2)

v3 deg(v3).

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

... ...

In our experiments we considered:

• OracleExact

• Oracle-noWR, subtracts to the
triangles for which is in the waiting
room, for top 10% edges entries sorted
by decreasing

Δ(e)
e

Δ′￼(e)
• MinDegreePredictor, storing the highest-

degree nodes, along with their degrees.
Given an edge ,
MinDegreePredictor outputs, as a
measure for the heaviness,

n̄

e = {u, v}

OH ({u, v}) = min (deg(u), deg(v))

..

Edge Heaviness Predictors

84

OracleExact
u1 v1

u2 v1

u3 v3

u2 v4 Δ ({u4, v4})

u1 v5 Δ ({u1, v5})

Δ ({u3, v3})

Δ ({u2, v1})

Δ ({u1, v1})

Oracle-noWR
u2 v1

u3 v3

u2 v4

u7 v7 Δ′￼({u7, v7})

u1 v4 Δ′￼({u1, v4})

Δ′￼({u2, v4})

Δ′￼({u3, v3})

Δ′￼({u2, v1})

MinDegreePredictor
v1 deg(v1)

u1 deg(u1)

v2 deg(v2)

v3 deg(v3).

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

m
10

n̄

In practice, !n̄ ≪ m/10

In our experiments we considered:

Experimental Evaluation

85

(1) Quality of approximations in terms of unbiasedness and variance, and estimations
at any time of the stream:

Experimental Evaluation

86Smaller variance

(1) Quality of approximations in terms of unbiasedness and variance, and estimations
at any time of the stream:

Experimental Evaluation

87Smaller variance Quality at any time

(2) Global Relative Error and Runtime vs Memory Budget : k

Experimental Evaluation

88

(2) Global Relative Error and Runtime vs Memory Budget : k

Experimental Evaluation

89

(2) Global Relative Error and Runtime vs Memory Budget : k

Experimental Evaluation

90

TABLE I

DATASETS’ STATISTICS: NUMBER n OF NODES; NUMBER m OF EDGES;

NUMBER T OF TRIANGLES

Dataset n m T

Single Graphs

Edit EN Wikibooks 133k 386k 178k
SOC YouTube Growth 3.2M 9.3M 12.3M

Cit US Patents 3.7M 16.5M 7.5M
Actors Collaborations 382k 15M 346.8M

Stackoverflow 2.5M 28.1M 114.2M
SOC LiveJournal 4.8M 42.8M 285.7M
Twitter-merged 41M 1.2B 34.8B

Snapshot Sequences

Oregon (9 graphs) 11k 23k 19.8k
AS-CAIDA (122 graphs) 26k 53k 36.3k

AS-733 (733 graphs) 6k 13k 6.5k
Twitter (4 graphs) 29.9M 373M 4.4B

We consider snapshot sequences from autonomous system networks.

Experimental Evaluation

91

Predictors are trained only on the first graph, and then used for subsequent streams.

(3) Evaluation in snapshot networks:

Experimental Evaluation

92

(3) Evaluation in snapshot networks:

Experimental Evaluation

93

First ~ 400 streams

(3) Evaluation in snapshot networks:

Experimental Evaluation

94

Final ~ 300 streams

Our contributions:
• Fast and accurate algorithm for approximating the number of global and local triangles using predictions,

both for insertion-only and fully-dynamic streams;

• Proposal of very simple and application-independent predictor, based on the degree of nodes;

• Extensive experimental evaluation, showing significant improvements, especially on networks with
sequences of hundreds of graph streams.

Conclusion

95

https://github.com/VandinLab/Tonic

Our contributions:
• Fast and accurate algorithm for approximating the number of global and local triangles using predictions,

both for insertion-only and fully-dynamic streams;

• Proposal of very simple and application-independent predictor, based on the degree of nodes;

• Extensive experimental evaluation, showing significant improvements, especially on networks with
sequences of hundreds of graph streams.

Thanks:

Conclusion

Progetto “National Centre for
HPC, Big Data and Quantum
Computing”,
CN00000013 (approvato
nell’ambito del Bando
M42C – Investimento 1.4 –
Avvisto “Centri Nazionali” – D.D.
n. 3138
del 16.12.2021, ammesso a
finanziamento con
Decreto del MUR n. 1031 del
17.06.2022)

C. Boldrin and F. Vandin, “Fast and Accurate Triangle
Counting in Graph Streams Using Predictions”,
ICDM 2024.

cristian.boldrin.2@phd.unipd.it
96

https://arxiv.org/pdf/2409.15205

https://github.com/VandinLab/Tonic

Code and extended version of the paper:

https://arxiv.org/pdf/2409.15205
https://github.com/VandinLab/Tonic

99

Reservoir Sampling
Uniform sampling of edges in the stream [De Stefani et al., KDD 2016].

A sample is said to be an uniform sample if all equal-sized subsets of are equally likely to be

S ⊆ E E S

ℙ [S = A] = ℙ [S = B], ∀ A ≠ B ⊆ E such that A = B .

100

Reservoir Sampling
Uniform sampling of edges in the stream [De Stefani et al., KDD 2016].

A sample is said to be an uniform sample if all equal-sized subsets of are equally likely to be

Let be the edge at time . Reservoir sampling keeps a uniform sample of edges as follows:

• If , then is added to sample

• Otherwise, with probability , edge is added to sample by replacing an uniformly at random edge from

the sample

S ⊆ E E S

ℙ [S = A] = ℙ [S = B], ∀ A ≠ B ⊆ E such that A = B .

e(t) t S k

S < k e(t) S

k
t

e(t) S

Waiting Room

101

Most real graph streams observe the tendency that future edges are more likely to form
triangles with recent edges rather than with older edges [Shin K., ICDM 2017].

Fr
eq

ue
nc

y

Total Time Interval

YouTube dataset

Total time interval: time between arrivals
of first and last edge, for each triangle.

Always store the most recent edges in the
waiting room .

We always store the most recent edges in
a portion of our memory budget , called
waiting room .

W

k
𝒲

Waiting Room

102

Most real graph streams observe the tendency that future edges are more likely to form
triangles with recent edges rather than with older edges [Shin K., ICDM 2017].

Fr
eq

ue
nc

y

Total Time Interval

YouTube dataset

Total time interval: time between arrivals
of first and last edge, for each triangle.

Always store the most recent edges in the
waiting room .

We always store the most recent edges in
a portion of our memory budget , called
waiting room .

W

k
𝒲

For fully-dynamic streams, we consider:

• : random pairing [Shin et al., ECML PKDD 2018]

• : waiting room + random pairing sampling [Lee et al., The VLDB Journal 2020]

• Chen: heavy edges set + fixed probability sampling [Chen et al., ICLR 2022] *lack of practical predictor

For fully-dynamic streams, we consider:

• : random pairing sampling [Shin et al., ECML PKDD 2018]

• : waiting room + random pairing sampling [Lee et al., The VLDB Journal 2020]

Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room,
heavy edges and uniform sampling.

ThinkDacc

WRSdel

ThinkDacc

WRSdel

State of The Art

103

104

Goal: compensate sample deletions using subsequent insertions. Maintain counters and for number
of good and number of bad uncompensated deletions.

dg db

Random Pairing
Random Pairing: achieve uniform sample in fully-dynamic streams.

When receiving an edge deletion :

• If is not in the sample , then ignore it (good sample deletion)

• Else, delete from (bad sample deletion)

e(t)

e(t) S

e(t) S

When receiving an edge insertion :

• If (deletions compensated), then proceed by reservoir sampling

• Else, add to sample with probability and decrement counters

e(t)

dg + db = 0

e(t) S db

dg + db

Algorithms with Predictions

Use of predictions about the input data has been formalised in the “Algorithms
with Predictions” framework [Mitzenmacher and Vassilvitskii, 2020]

• Go beyond worst-case analysis

• Predictor empowering effectiveness of classical algorithms

105

Challenges:

• Consistency: useful predictions improve performances

• Robustness: bad predictions do not worsen too much performances

• Practicality: predictions derived by tasks on same data-domain

E

106

E B E T C

…

For each edge observed on the stream at time .

Each triangle counted or deleted in the sample is scaled by the inverse of the probability
with which the triangle edges but have been previously sampled.

e(t) Σ t

e(t)

+ ++ - -

Time

Current Sample

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Probability Computation:

• If no edges are light:

• If only one edge is light:

• If both edges are light:

p

p = 1

p = p(t)

p = p(t) ⋅ p(t−1)

p(t) = min 1,
k(1 − α)(1 − β)

ℒ(t)

Reservoir Sampling:

Tonic: Overall Algorithm

E

107

E B E T C

…

For each edge observed on the stream at time .

Each triangle counted or deleted in the sample is scaled by the inverse of the probability
with which the triangle edges but have been previously sampled.

e(t) Σ t

e(t)

+ ++ - -

Time

Current Sample

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Probability Computation:

• If no edges are light:

• If only one edge is light:

• If both edges are light:

p

p = 1

p = p(t)

p = p(t) ⋅ p(t−1)

p(t) = min 1,
k(1 − α)(1 − β)

ℒ(t) + dg + db

Random Pairing:

Tonic: Overall Algorithm

Tonic: theoretical analysis

108

We prove that the predictor helps when it provides fairly reliable information on heavy edges.

Tonic: theoretical analysis

109

We prove that the predictor helps when it provides fairly reliable information on heavy edges.

If this is not the case, we also prove that our algorithm Tonic returns estimates as accurate as
WRS.

Proposition (informal): the variance of the estimates of Tonic is equal than the variance of the
estimates of WRS if the predictor predicts a randomly chosen set of edges as heavy edges.

Tonic: theoretical analysis

110

Let the total number of triangles in which heavy edges appear, and similarly for light edges.

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS estimates if:

Interpretation: useful predictions (predicted heavy edges are involved in a sufficient number of
triangles), lead to better estimates.

Representative values: if , and , then the bound above
corresponds to being at least one fifth of the overall number of triangles.

TH TL

TH > 3
(1/p′￼

2 − 1/p2) + cρ(1/p′￼− 1/p)
(1/p − 1)(3 + 4ρ/c)

⋅ TL

p′￼ = 0.09 < p = 0.1 ρ = 100 c = 1.5
TH

In our experiments we consider:

• OracleExact, storing the value of for
top 10% () heaviest edges , and 0
for the remaining ones

Δ(e)
m/10 e

• OracleExact

• Oracle-noWR, storing the value of
obtained by subtracting to the
number of triangles for which e is in the
waiting room, for top 10% edges entries
sorted by decreasing

Δ′￼(e)
Δ(e)

Δ′￼(e)

• MinDegreePredictor, storing the top
highest-degree nodes, along with their
degrees. The number of node entries is
fixed so to correspond to the number of
unique nodes that would required to
compute MinDegreePredictor for the top
10% edges (according to such predictor)

n̄

n̄

The predictor used by Tonic could be implemented by a machine learning model that may
consider information other than the graph.

Edge Heaviness Predictor

111

(*) Quality of approximations in terms of unbiasedness and variance, estimations at any
time of the stream, and number of counted and estimated triangles.

Experimental Evaluation

112

Experimental Evaluation

113

(4) Performances in fully-dynamic streams.
Streams are created computing additions and deletions from snapshot networks.
Again, predictors are trained only on the first graph, hence oblivious to removals of edges.

Experimental Evaluation

114

(4) Performances in fully-dynamic streams.
Streams are created computing additions and deletions from snapshot networks.
Again, predictors are trained only on the first graph, hence oblivious to removals of edges.

Quality at any time Better estimates

