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Problem: count the number of triangles in graphs.  

Goal:  

• Count the global number of triangles
, where , , and 

 are all in the set  of the edges 

• Count the local number of triangles for 
each node  in the graph.

Δ = {u, v, w} {u, v} {w, u}
{v, w} E

v
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Applications: 

• Community detection 

• Anomaly detection 

• Molecular biology

Given:  

• a set  of nodes,  

• A set  of edges,  

V V = n

E E = m
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Streaming model:

Graph

Edges are observed as a stream of updates in arbitrary order. 

Updates: insertions and deletions.
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In most applications, the exact computation of triangles is unfeasible, due to the size 
of the data. 



Settings of our problem

22

In most applications, the exact computation of triangles is unfeasible, due to the size 
of the data. 

Graph of Twitter followers



Settings of our problem

23

In most applications, the exact computation of triangles is unfeasible, due to the size 
of the data. 

Graph of Twitter followers

• Design fast and efficient 
algorithms, that provide high-
quality approximation  

• For example, we can store a 
small fraction of edges of the 
graph 



Settings of our problem

24

In most applications, the exact computation of triangles is unfeasible, due to the size 
of the data. 

Graph of Twitter followers

• Design fast and efficient 
algorithms, that provide high-
quality approximation  

• For example, we can store a 
small fraction of edges of the 
graph 



Settings of our problem

25

In most applications, the exact computation of triangles is unfeasible, due to the size 
of the data. 

Sample of Twitter followers

Use of Sampling

• Design fast and efficient 
algorithms, that provide high-
quality approximation  

• For example, we can store a 
small fraction of edges of the 
graph 
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Each incoming edge on the stream is included in the sample with a certain probability.
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For insertion-only streams, we consider: 

• Triest: [De Stefani et al., KDD 2016] 
Sample of edges via reservoir sampling
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…
Memory budget  = number of edges to storek

Uniform random sample of  edgesk
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• WRS: [Shin K., ICDM 2017] 
Most recent edges (waiting room) + reservoir sampling 
Exploit temporal localities in real graph streams

• Triest: 
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• WRS: [Shin K., ICDM 2017] 
Most recent edges (waiting room) + reservoir sampling 
Exploit temporal localities in real graph streams

• Triest: 

…
Memory budget  = number of edges to storek

Uniform random sample of  edgesk ⋅ (1 − α)
Waiting Room of  edgesk ⋅ α
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• WRS: [Shin K., ICDM 2017] 
Most recent edges (waiting  
 

• Triest: 

This talk: Triangle Counting Using Predictions 
C. Boldrin and F. Vandin, “Fast and Accurate Triangle Counting in Graph Streams Using 
Predictions”, ICDM 2024



Algorithms with Predictions

Use of predictions about the input data has been formalised in the “Algorithms 
with Predictions” framework [Mitzenmacher and Vassilvitskii, 2020] 

• Go beyond worst-case analysis 

• Predictor empowering effectiveness of classical algorithms

38



For insertion-only streams, we consider:
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• Triest: 
• WRS: [Shin K., ICDM 2017]

• Chen: [Chen et al., ICLR 2022] 
Heavy edges set + Fixed Probability Sampling 
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• Triest: 
• WRS: [Shin K., ICDM 2017]

• Chen: [Chen et al., ICLR 2022] 
Heavy edges set + Fixed Probability Sampling 

…
Memory budget  = number of edges to storek

Uniform random sample of  edgesk ⋅ (1 − β)
Heavy Edges Set of  edgesk ⋅ β



Heaviness of an edge : number of triangles incident to . 

Idea: if an edge is heavy, we want to keep it in our sample. 
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Idea: if an edge is heavy, we want to keep it in our sample. 

e e



Heavy Edges

43

1

1
1

11

1

1

e

 is heavy, incident to 
“many” triangles (4 triangles) 

e

1

Heaviness of an edge : number of triangles incident to . 

Idea: if an edge is heavy, we want to keep it in our sample. 

e e



Heavy Edges

44

1

1

1
1

11

1

1

e

Heaviness of an edge : number of triangles incident to . 

Idea: if an edge is heavy, we want to keep it in our sample. 

e e

 is heavy, incident to 
“many” triangles (4 triangles) 

e



Heavy Edges

45

1

1

1
1

11

1

1

Heaviness of an edge : number of triangles incident to . 

Idea: if an edge is heavy, we want to keep it in our sample. 

e e



Heaviness of an edge : number of triangles incident to . 
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Heaviness of an edge : number of triangles incident to . 

Idea: if an edge is heavy, we want to keep it in our sample. 

e e
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Always store the heaviest edges in set H

Assumption: 

Predictor  gives a measure 
related to the heaviness for each edge

OH : E → ℝ+



For insertion-only streams, we consider:

State of The Art
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• Triest: 
• WRS: [Shin K., ICDM 2017]
• Chen: [Chen et al., ICLR 2022] 

Heavy edges set + Fixed Probability Sampling 
Lack of practical predictor!

…
Memory budget  = number of edges to storek

Uniform random sample of  edgesk ⋅ (1 − β)
Heavy Edges Set of  edgesk ⋅ β



Challenges: 

• Keep high-quality approximations at every time during the stream 

• Do not exceed a given memory budget 

• Updates of edges can only be accessed once (one-pass algorithm) 

• Design a practical and efficient predictor

Challenges of Our Problem

49

Problem: Approximating the number of triangles in graph streams 
using predictions.
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…
Memory budget  = number of edges to storek

Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling
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Store  
most recent 
edges in 
waiting 
room 

k ⋅ α

W

Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling
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(according to the 
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Overview of Our Algorithm
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Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling
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…
Memory budget  = number of edges to storek

Store  
heaviest edges 
(according to the 
predictor) in heavy 
edge set 

k ⋅ (1 − α) ⋅ β

H

Store  
most recent 
edges in 
waiting 
room 

k ⋅ α

W

Overview of Our Algorithm
Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, heavy edges and uniform sampling

We empirically fix:  
 = 0.05, and  = 0.2α β

Store a uniform 
random sample  of 

 light 
edges

S
k ⋅ (1 − α) ⋅ (1 − β)
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• Tonic provides fast and accurate approximations of global (and local) triangles in 
both insertion-only and fully-dynamic graph streams 

• We propose a simple and application-independent predictor, based on the 
degree of the nodes  

• Extensive experimental evaluation shows improvements and scalability of Tonic 
with respect to the state of the art

Our Contributions
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For each edge  observed on the stream  at time : 

Triangles are weighted by the inverse probability with which edges have been sampled. 
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For each edge  observed on the stream  at time : 

If  is full, pop oldest edge, and sample lightest (according to the predictor) between 
popped edge and edges in .
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Tonic: Overall Algorithm

Current Sample     W(t) ∪ H(t) ∪ S(t)
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A Practical Heaviness Predictor
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We do not make any assumption on the predictor used by Tonic. 



We propose a simple, practical and application-independent predictor: 

MinDegreePredictor stores  highest-degree nodes and degrees. Given edge , 
outputs:  if both  and  are present, 0 otherwise.

n̄ e = {u, v}
OH ({u, v}) = min (deg(u), deg(v)) u v

A Practical Heaviness Predictor

71

MinDegreePredictor
v1 deg(v1)

u1 deg(u1)

v2 deg(v2)

v3 deg(v3)

... ...

We do not make any assumption on the predictor used by Tonic. 

n̄



Tonic: theoretical analysis
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Theorem (Unbiasedness of estimates): let  be the true number of global triangles. Then, 
Tonic outputs  such that: 

 

T(t)

̂T(t)

𝔼 [ ̂T(t)] = T(t), ∀ t ≥ 0



Tonic: theoretical analysis
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We prove that useful predictions in Tonic leads to better estimates than using WRS alone. 
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We prove that useful predictions in Tonic leads to better estimates than using WRS alone.  

Consider: 

• WRS sampling edges leaving the waiting room with probability  

• Tonic sampling light edges with probability  

• We define an edge  as heavy if  appears in  triangles (otherwise, light) 

• Errors of predictions: heavy edges involved in  triangles, light edges involved in  
triangles, for some . For edges with heaviness  , the predictor can make arbitrarily 
wrong choices 

p

p′￼ < p

e e ≥ ρ

≥ ρ ⋅ c ≤ ρ/c
c ≥ 1 ∈ [ρ/c , ρ ⋅ c]
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Let  the total number of triangles in which heavy edges appear, and  similarly for light 
edges. 

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS 
estimates if: 

 

TH TL

TH > 3
(1/p′￼

2 − 1/p2) + cρ(1/p′￼− 1/p)
(1/p − 1)(3 + 4ρ/c)

⋅ TL
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Let  the total number of triangles in which heavy edges appear, and  similarly for light 
edges. 

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS 
estimates if: 

 

Interpretation: useful predictions (predicted heavy edges are involved in a sufficient number of 
triangles), lead to better estimates.

TH TL

TH > 3
(1/p′￼

2 − 1/p2) + cρ(1/p′￼− 1/p)
(1/p − 1)(3 + 4ρ/c)

⋅ TL



TABLE I

DATASETS’ STATISTICS: NUMBER n OF NODES; NUMBER m OF EDGES;

NUMBER T OF TRIANGLES

Dataset n m T

Single Graphs

Edit EN Wikibooks 133k 386k 178k
SOC YouTube Growth 3.2M 9.3M 12.3M

Cit US Patents 3.7M 16.5M 7.5M
Actors Collaborations 382k 15M 346.8M

Stackoverflow 2.5M 28.1M 114.2M
SOC LiveJournal 4.8M 42.8M 285.7M
Twitter-merged 41M 1.2B 34.8B

Snapshot Sequences

Oregon (9 graphs) 11k 23k 19.8k
AS-CAIDA (122 graphs) 26k 53k 36.3k

AS-733 (733 graphs) 6k 13k 6.5k
Twitter (4 graphs) 29.9M 373M 4.4B

We consider real-world single graph streams, from social network, citation network. 

Compare Tonic with state-of-the-art: algorithms provided with same memory budget .k

Experimental Evaluation

78
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Dataset n m T

Single Graphs

Edit EN Wikibooks 133k 386k 178k
SOC YouTube Growth 3.2M 9.3M 12.3M

Cit US Patents 3.7M 16.5M 7.5M
Actors Collaborations 382k 15M 346.8M

Stackoverflow 2.5M 28.1M 114.2M
SOC LiveJournal 4.8M 42.8M 285.7M
Twitter-merged 41M 1.2B 34.8B

Snapshot Sequences

Oregon (9 graphs) 11k 23k 19.8k
AS-CAIDA (122 graphs) 26k 53k 36.3k

AS-733 (733 graphs) 6k 13k 6.5k
Twitter (4 graphs) 29.9M 373M 4.4B

We consider real-world single graph streams, from social network, citation network. 

Compare Tonic with state-of-the-art: algorithms provided with same memory budget .k

Experimental Evaluation
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Global Relative Error:  
| ̂T − T | / T



In our experiments we considered:

Edge Heaviness Predictors
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• OracleExact, stores the value of  for 
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In our experiments we consider: 
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top 10% ( ) heaviest edges , and 0 
for the remaining ones 
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Impractical Predictors

In our experiments we considered:
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triangles for which  is in the waiting 
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• OracleExact 

• Oracle-noWR, subtracts to  the 
triangles for which  is in the waiting 
room, for top 10% edges entries sorted 
by decreasing 

Δ(e)
e

Δ′￼(e)• MinDegreePredictor, stores  highest-
degree nodes and degrees. Given edge 

, outputs:

n̄

e = {u, v}
OH ({u, v}) = min (deg(u), deg(v))

Edge Heaviness Predictors
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• OracleExact 

• Oracle-noWR, subtracts to  the 
triangles for which  is in the waiting 
room, for top 10% edges entries sorted 
by decreasing 

Δ(e)
e

Δ′￼(e)
• MinDegreePredictor, storing the  highest-

degree nodes, along with their degrees. 
Given an edge , 
MinDegreePredictor outputs, as a 
measure for the heaviness, 

n̄

e = {u, v}

OH ({u, v}) = min (deg(u), deg(v))

..

Edge Heaviness Predictors
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m
10

n̄ . ...

In practice,  !n̄ ≪ m/10

In our experiments we considered:
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(1) Quality of approximations in terms of unbiasedness and variance, and estimations 
at any time of the stream: 

Experimental Evaluation

86Smaller variance



(1) Quality of approximations in terms of unbiasedness and variance, and estimations 
at any time of the stream: 

Experimental Evaluation

87Smaller variance Quality at any time



(2) Global Relative Error and Runtime vs Memory Budget : k

Experimental Evaluation
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TABLE I

DATASETS’ STATISTICS: NUMBER n OF NODES; NUMBER m OF EDGES;

NUMBER T OF TRIANGLES

Dataset n m T

Single Graphs

Edit EN Wikibooks 133k 386k 178k
SOC YouTube Growth 3.2M 9.3M 12.3M

Cit US Patents 3.7M 16.5M 7.5M
Actors Collaborations 382k 15M 346.8M

Stackoverflow 2.5M 28.1M 114.2M
SOC LiveJournal 4.8M 42.8M 285.7M
Twitter-merged 41M 1.2B 34.8B

Snapshot Sequences

Oregon (9 graphs) 11k 23k 19.8k
AS-CAIDA (122 graphs) 26k 53k 36.3k

AS-733 (733 graphs) 6k 13k 6.5k
Twitter (4 graphs) 29.9M 373M 4.4B

We consider snapshot sequences from autonomous system networks.

Experimental Evaluation
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Predictors are trained only on the first graph, and then used for subsequent streams.



(3) Evaluation in snapshot networks: 

Experimental Evaluation
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(3) Evaluation in snapshot networks: 
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First ~ 400 streams



(3) Evaluation in snapshot networks: 

Experimental Evaluation
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Final ~ 300 streams



Our contributions: 
• Fast and accurate algorithm for approximating the number of global and local triangles using predictions, 

both for insertion-only and fully-dynamic streams; 

• Proposal of very simple and application-independent predictor, based on the degree of nodes; 

• Extensive experimental evaluation, showing significant improvements, especially on networks with 
sequences of hundreds of graph streams. 

Conclusion

95
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Reservoir Sampling
Uniform sampling of edges in the stream [De Stefani et al., KDD 2016]. 

A sample  is said to be an uniform sample if all equal-sized subsets of  are equally likely to be  

  

S ⊆ E E S

ℙ [S = A] = ℙ [S = B], ∀ A ≠ B ⊆ E  such that  A = B .
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Reservoir Sampling
Uniform sampling of edges in the stream [De Stefani et al., KDD 2016]. 

A sample  is said to be an uniform sample if all equal-sized subsets of  are equally likely to be  

  

Let  be the edge at time . Reservoir sampling keeps a uniform sample  of  edges as follows: 

• If , then  is added to sample  

• Otherwise, with probability , edge  is added to sample  by replacing an uniformly at random edge from 

the sample

S ⊆ E E S

ℙ [S = A] = ℙ [S = B], ∀ A ≠ B ⊆ E  such that  A = B .

e(t) t S k

S < k e(t) S

k
t

e(t) S



Waiting Room
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Most real graph streams observe the tendency that future edges are more likely to form 
triangles with recent edges rather than with older edges [Shin K., ICDM 2017]. 

Fr
eq

ue
nc

y

Total Time Interval

YouTube dataset

Total time interval: time between arrivals 
of first and last edge, for each triangle.  

Always store the most recent edges in the 
waiting room . 

We always store the most recent edges in 
a portion of our memory budget , called 
waiting room .

W

k
𝒲
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Most real graph streams observe the tendency that future edges are more likely to form 
triangles with recent edges rather than with older edges [Shin K., ICDM 2017]. 

Fr
eq

ue
nc

y

Total Time Interval

YouTube dataset

Total time interval: time between arrivals 
of first and last edge, for each triangle.  

Always store the most recent edges in the 
waiting room . 

We always store the most recent edges in 
a portion of our memory budget , called 
waiting room .

W

k
𝒲



For fully-dynamic streams, we consider: 

•  : random pairing [Shin et al., ECML PKDD 2018] 

•  : waiting room + random pairing sampling [Lee et al., The VLDB Journal 2020] 

• Chen: heavy edges set + fixed probability sampling [Chen et al., ICLR 2022] *lack of practical predictor 

For fully-dynamic streams, we consider:  

•  : random pairing sampling [Shin et al., ECML PKDD 2018] 

•  : waiting room + random pairing sampling [Lee et al., The VLDB Journal 2020] 

Our algorithm Tonic (Triangle cOuNting with predICtions) combines waiting room, 
heavy edges and uniform sampling.

ThinkDacc

WRSdel

ThinkDacc

WRSdel

State of The Art
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Goal: compensate sample deletions using subsequent insertions. Maintain counters  and  for number 
of good and number of bad uncompensated deletions. 

dg db

Random Pairing
Random Pairing: achieve uniform sample in fully-dynamic streams.

When receiving an edge deletion : 

• If  is not in the sample , then ignore it (good sample deletion) 

• Else, delete  from  (bad sample deletion) 

e(t)

e(t) S

e(t) S

When receiving an edge insertion : 

• If  (deletions compensated), then proceed by reservoir sampling  

• Else, add  to sample  with probability   and decrement counters

e(t)

dg + db = 0

e(t) S db

dg + db



Algorithms with Predictions

Use of predictions about the input data has been formalised in the “Algorithms 
with Predictions” framework [Mitzenmacher and Vassilvitskii, 2020] 

• Go beyond worst-case analysis 

• Predictor empowering effectiveness of classical algorithms

105

Challenges: 

• Consistency: useful predictions improve performances 

• Robustness: bad predictions do not worsen too much performances 

• Practicality: predictions derived by tasks on same data-domain



E
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E B E T C

…

For each edge  observed on the stream  at time . 

Each triangle counted or deleted in the sample is scaled by the inverse of the probability 
with which the triangle edges but  have been previously sampled. 

e(t) Σ t

e(t)

+ ++ - -

Time

Current Sample

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Probability  Computation: 

• If no edges are light:  

• If only one edge is light:  

• If both edges are light: 

p

p = 1

p = p(t)

p = p(t) ⋅ p(t−1)

p(t) = min 1,
k(1 − α)(1 − β)

ℒ(t)

Reservoir Sampling:

Tonic: Overall Algorithm
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E B E T C

…

For each edge  observed on the stream  at time . 

Each triangle counted or deleted in the sample is scaled by the inverse of the probability 
with which the triangle edges but  have been previously sampled. 

e(t) Σ t

e(t)

+ ++ - -

Time

Current Sample

D A D L A

Stream Σ

A

C

B

D

Predictor OH

Probability  Computation: 

• If no edges are light:  

• If only one edge is light:  

• If both edges are light: 

p

p = 1

p = p(t)

p = p(t) ⋅ p(t−1)

p(t) = min 1,
k(1 − α)(1 − β)

ℒ(t) + dg + db

Random Pairing:

Tonic: Overall Algorithm



Tonic: theoretical analysis
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We prove that the predictor helps when it provides fairly reliable information on heavy edges. 



Tonic: theoretical analysis
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We prove that the predictor helps when it provides fairly reliable information on heavy edges. 

If this is not the case, we also prove that our algorithm Tonic returns estimates as accurate as 
WRS. 

Proposition (informal): the variance of the estimates of Tonic is equal than the variance of the 
estimates of WRS if the predictor predicts a randomly chosen set of edges as heavy edges.  



Tonic: theoretical analysis
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Let  the total number of triangles in which heavy edges appear, and  similarly for light edges. 

Proposition (informal): the variance of Tonic estimates is less than the variance of WRS estimates if: 

 

Interpretation: useful predictions (predicted heavy edges are involved in a sufficient number of 
triangles), lead to better estimates.  

Representative values: if ,  and , then the bound above 
corresponds to  being at least one fifth of the overall number of triangles. 

TH TL

TH > 3
(1/p′￼

2 − 1/p2) + cρ(1/p′￼− 1/p)
(1/p − 1)(3 + 4ρ/c)

⋅ TL

p′￼ = 0.09 < p = 0.1 ρ = 100 c = 1.5
TH



In our experiments we consider: 

• OracleExact, storing the value of  for 
top 10% ( ) heaviest edges , and 0 
for the remaining ones 

Δ(e)
m/10 e

• OracleExact 

• Oracle-noWR, storing the value of  
obtained by subtracting to  the 
number of triangles for which e is in the 
waiting room, for top 10% edges entries 
sorted by decreasing 

Δ′￼(e)
Δ(e)

Δ′￼(e)

• MinDegreePredictor, storing the top  
highest-degree nodes, along with their 
degrees. The number  of node entries is 
fixed so to correspond to the number of 
unique nodes that would required to 
compute MinDegreePredictor for the top 
10% edges (according to such predictor)

n̄

n̄

The predictor used by Tonic could be implemented by a machine learning model that may 
consider information other than the graph. 

Edge Heaviness Predictor
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(*) Quality of approximations in terms of unbiasedness and variance, estimations at any 
time of the stream, and number of counted and estimated triangles.  

Experimental Evaluation
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Experimental Evaluation
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(4) Performances in fully-dynamic streams. 
Streams are created computing additions and deletions from snapshot networks.  
Again, predictors are trained only on the first graph, hence oblivious to removals of edges. 
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(4) Performances in fully-dynamic streams. 
Streams are created computing additions and deletions from snapshot networks.  
Again, predictors are trained only on the first graph, hence oblivious to removals of edges. 

Quality at any time Better estimates


